课题组硕士生曾程在国际期刊《Nano-Micro Letters》上发表文章,并入选期刊封面文章
近日,课题组成员曾程撰写的综述文章“Spintronics in Two-dimensional Materials”在高水平SCI期刊《Nano-Micro Letters》(IF:9.05,中科院一区)上发表,并入选期刊封面。
随着摩尔定律的终结,开发新的自由度已成为促进电子设备进一步发展的重要研究方向。自旋电子学的目的是利用电子的自旋度自由度来实现新颖的信息存储和逻辑设备。自旋电子器件具有更快的速度,超低的散热和不挥发的优势,使其成为未来电子产品的理想选择。利用电子的自旋度作为信息载体的自旋电子学是实现超越CMOS器件的最有吸引力的领域。近年来,二维(2D)材料因其独特的自旋依赖性而受到了自旋电子学研究的极大关注,例如石墨烯的超长自旋弛豫时间和过渡金属二卤化物(TMDC)的自旋谷锁定。此外,相关的异质结构器件提供了前所未有的可能性,可以通过邻近效应组合不同的特征,从而可以弥补单个2D材料的局限性。目前,异质结构器件技术发展非常快,并在自旋注入和操纵方面取得了重大成就。然而,这种器件在实际应用中仍然存在挑战,例如,2D材料中的自旋弛豫机理尚不清楚,并且尚未实现高效的自旋注入。在这篇综述中,我们系统的介绍了2D材料及其相关的异质结构自旋器件,系统地总结了自旋注入,运输,操纵以及相关器件在信息存储和处理中的应用进展。最后还将重点介绍了基于2D材料的自旋电子学器件研究的当前挑战和未来前景。该工作有助于理解二维材料及其异质结中的自旋注入、运输、操纵等特性,认清二维材料自旋电子学发展现状和发展方向,更有利于基于二维材料自旋电子学在信息存储和量子计算器件的实现。
《Nano-Micro Letters》(NML, Nano-Micro Lett.纳微快报)是Springer以Open Access开放获取出版的国际期刊,主要发表物理、化学、材料、生物和工程领域纳米级和微米级的科学、技术的最新进展,为研究纳米微米尺度的科研工作者提供一个专业学术交流平台,致力于快速发表与纳米微米相关的科研进展和评论文章。该期刊2018年影响因子为9.05,属于中科院一区。
文章链接:https://link.springer.com/article/10.1007/s40820-020-00424-2#article-info.
Comments:
Spintronics is a rapidly growing field that is attracting much attention due to its potential applications in the development of high-performance devices. Two-dimensional (2D) materials have recently emerged as promising materials for spintronics due to their unique electronic, magnetic, and mechanical properties.
2D materials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus exhibit high spin polarization, high carrier mobility, and strong spin-orbit interaction, making them ideal for spintronics applications. In addition, 2D materials have a thin film structure, which reduces the damping of spin-polarized currents, leading to higher spin coherence times and improved device performance.
Some of the current applications of spintronics in 2D materials include spin-valve devices, spin-field-effect transistors, spin-torque oscillators, and magnetic memory devices. These devices have the potential to outperform their traditional electronic counterparts in terms of speed, energy efficiency, and data storage density.
In conclusion, the combination of spintronics and 2D materials has great potential to revolutionize the way we store, process, and transmit information, leading to the development of high-performance and sustainable devices for future generations.