课题组硕士生曾程在国际化学顶级期刊CHEM SOC REV上发表综述论文
课题组成员曾程在国际化学顶级期刊CHEM SOC REV上发表综述论文
近日,课题组成员刘老师,曾程同学,和湖南大学段曦东教授、潘安练教授,电子科技大学王志明教授,澳大利亚悉尼大学刘宗文教授等人撰写的综述文章“Moiré superlattice and related Moiré Excitons in Twisted van der Waals Heterostructures”在国际化学顶级刊物Chem. Soc. Rev (IF=54.56) 上发表。论文第一作者兼通讯作者为刘艳平老师,共同第一作者为课题组2018级硕士研究生曾程同学。这是中南大学有史以来硕士生博士生中,第一位在影响因子超过40以上的期刊上以第一作者发表论文的学生。
莫尔超晶格和莫尔激子的最新进展,例如量子发射阵列,低能平带和莫特绝缘子,迅速吸引了光电子学,材料和能量研究领域的关注。层间扭转变成自由度,自由度改变了材料系统的特性,而莫尔激子的实现也提供了制造人造激子晶体的可行性。而且,莫尔激子在各种外部条件(包括空间极化,交替偶极和门相关性)的调节下均表现出许多令人兴奋的特性。所有这些都与纳米光子学和量子信息中的应用有关。但是,理论发展的滞后和加工技术的低效率极大地限制了莫尔超晶格应用的潜力。在这篇综述中,我们系统地总结和讨论了莫尔超晶格和莫尔激子的最新进展,并分析了当前的挑战,并提出了相关建议。毫无疑问,莫尔超晶格进一步的研究将导致应用领域的突破,并引发传统固态物理学和材料科学领域的改革与创新。
该研究得到国家自然科学基金委,湖南省芙蓉学者特聘教授基金,湖南省杰出青年基金和湖南省重点研发等相关经费支持。Chem. Soc. Rev.是出版在化学领域最前沿的、高影响、可读性强的综述性评论杂志,属于化学行业,“化学综合”子行业的顶级杂志。
论文链接:https://pubs.rsc.org/en/content/articlelanding/2021/cs/d0cs01002b
Comments:
Moiré superlattice is a periodic pattern formed by the overlap of two or more lattices with slightly different lattice constants. In the context of twisted van der Waals heterostructures, the Moiré superlattice is created by the rotation of two graphene or transition metal dichalcogenide (TMD) layers with respect to each other.
Moiré Excitons are light-emitting particles that are associated with Moiré superlattice in twisted van der Waals heterostructures. These excitons are created by the interaction between electrons and holes in the overlapped lattice, and they are highly localized in the Moiré pattern.
Moiré superlattices and Moiré Excitons have gained a lot of attention in the field of condensed matter physics and materials science due to their unique properties and potential applications in optoelectronics and photonics. For example, the presence of Moiré Excitons in twisted van der Waals heterostructures can significantly enhance the light emission efficiency and stability, which makes them suitable for use in optoelectronic devices such as OLEDs and LEDs.
In conclusion, Moiré superlattice and Moiré Excitons in Twisted van der Waals Heterostructures are important research areas that hold great potential for the development of advanced materials and devices.