博士后郑海红在顶级期刊Advanced Materials 上发表论文

2023-01-23 20:36:19 528

课题组博士后郑海红在顶级期刊Advanced Materials 上发表论文

       

      近日,课题组博士后郑海红同学在刘老师的指导下,以第一作者在国际材料领域顶级期刊Advanced Materials(影响因子32.08)上发表题为Strong interlayer coupling in twisted transition metal dichalcogenide moiré superlattices”(TMDCs莫尔超晶格的层间耦合特性)的实验论文。

图片关键词

图片关键词

图:TMDCs莫尔超晶格的层间耦合特性

      扭角范德华材料中的莫尔超晶格为探索光-物质相互作用提供了一个强大的平台。莫尔超晶格中的周期性的莫尔势可以诱导强相关的量子现象,如莫尔激子、超导和Mott绝缘态,这些都依赖于与界面层间耦合相关的莫尔势。然而,莫尔超晶格主要是通过机械剥离技术和手工堆叠方法制备的,其中转移方法容易造成界面污染,通过直接生长方法制备高质量的小扭转角双分子层莫尔超晶格仍然是一个重大挑战。本文中,我们利用原子辅助生长技术,通过CVD方法合成了不同扭曲角度的WSe2/WSe2均质层。利用低频拉曼散射光谱,对莫尔超晶格的均匀性进行了映射,证明了CVD制备的扭角均质层的强界面耦合。扭曲角为1.5°CVD生长和人工堆叠的同质结构的莫尔势深度分别为115和45 meV(增加了155%),表明界面耦合可以调节莫尔势的深度。我们的研究结果为研究强层间耦合对莫尔的调制开辟了新的途径,并为扭电子学的发展提供了基础。

论文链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202210909

新闻报道:https://news.csu.edu.cn/info/1003/155014.htm

Comments: 

Twisted transition metal dichalcogenide (TMD) moiré superlattices have been a subject of significant interest in the field of materials science and physics due to their unique electronic properties. The strong interlayer coupling in these systems is a key factor that determines the electronic structure and optical properties of the material.

The interlayer coupling arises from the van der Waals interaction between the TMD layers, which results in strong bonding between the layers. This strong interlayer coupling leads to the formation of moiré patterns, where the lattice structures of the TMD layers are distorted and rearranged to form a new superlattice structure.

The strong interlayer coupling in twisted TMD moiré superlattices has been shown to result in a variety of electronic properties, including new band structures, enhanced spin-orbit coupling, and the emergence of new electronic states. These properties have been found to be highly tunable by varying the twist angle between the TMD layers, leading to the potential for new electronic and optoelectronic applications.

Overall, the strong interlayer coupling in twisted TMD moiré superlattices is a key factor in the formation of new electronic and optical properties, making these materials a promising area of research for future technological applications.