博士生陈俊荧同学在国际知名期刊Small上发表论文

2024-08-27 19:59:29 101

博士生陈俊荧同学在国际知名期刊Small上发表论文


      近日,课题组成员陈俊荧同学在刘老师的指导下,以第一作者在中科院1区TOP期刊Small上发表题为 “Giant Optical Anisotropy Induced by Magnetic Order in FePS3/WSe2 Heterostructures(FePS3/WSe2异质结构中磁序引发的巨大的光学各向异性特性)的实验论文。


图片关键词

图:FePS3/WSe2异质结构中磁序引发的巨大的光学各向异性特性


        二维(2D)范德华(vdW)材料领域自从通过机械剥离技术发现稳定的单层石墨烯以来,迅速发展起来。对这些材料物理特性的探索揭示了许多引人注目的特性,其中包括二维vdW材料中的磁性现象,这已成为凝聚态物理研究的焦点。这种磁性赋予了材料独特的属性,如量子自旋霍尔效应和狄拉克费米子行为,使其在磁存储设备、磁传感器以及自旋电子学领域具有巨大的应用潜力。材料中的固有磁矩为控制分子间相互作用提供了新的维度,为在纳米尺度上操纵量子态提供了一个多功能平台。在磁性材料中,反铁磁性表现出优异的性能。反铁磁材料具有几乎为零的杂散场,能够在抵抗外部场干扰的同时实现有效的自旋传输,这使其成为超紧凑型微型器件的理想选择。作为一种反铁磁材料,FePS3表现出伊辛型反铁磁性,其尼尔温度约为120 K。此外,由于层间相互作用对磁性有序的影响微弱,其磁性转变温度几乎不受厚度的影响。在高磁场下,FePS3会转变为铁磁性,其沿晶体c轴的临界磁场Hc约为39.35 T。将二维磁性材料与过渡金属二硫族化合物(TMDs)相结合,开辟了创造异质结构的新途径,显著拓展了这些材料的应用潜力。

       TMDs表现出卓越的电学特性,具有高载流子迁移率和电导率,使其在电子和光电子器件中充满前景。它们还具备优异的光学特性,宽带隙使其能够吸收和发射可见光范围内的光子,因而在光电探测器、光学传感器和光电转换器的制造中具有重要作用。特别是,TMDs中的大自旋轨道耦合为拓扑能带工程和自旋与谷特性的光学操控提供了机会。将二维磁性材料与TMDs集成,展现了开发磁性电子设备的诱人前景,丰富了自旋电子学的功能和性能。尽管取得了这些进展,通过磁矩操控二维磁性材料的光学特性的探索仍处于初期阶段。考虑到光学各向异性在众多高效光学操作中的关键作用,理解磁矩对TMDs各向异性光学特性的影响是一个巨大的挑战。为弥补这一空白,我们的研究旨在阐明磁矩与光学特性之间的复杂相互作用。

       在本研究中,我们通过垂直堆叠精心设计了不同层数的nL-FePS3/WSe2异质结构(HS),研究了磁性有序对低温(1.65 K)拉曼和光致发光(PL)光谱的影响。为了研究异质结构对谷极化和塞曼分裂的影响,我们测量了单层WSe2和异质结构在-9 T9 T范围内的磁场依赖性谷极化PL光谱。此外,异质结构通过磁性诱导的结构相变增强了层间库仑相互作用,诱导了WSe2层中的激子发射产生显著的各向异性,最大极化率约为5.1FePS3(FPS)从顺磁性转变为反铁磁性,增强了nL-FPS/WSe2异质结构中的层间库仑相互作用,导致了从非极化到极化的转变。我们的研究有助于高效光学器件的改进与设计,并为纳米技术领域中的磁光存储和磁光传感器等应用提供了新的见解和方法。

文章链接:https://onlinelibrary.wiley.com/doi/10.1002/smll.202404346


Comments:

This paper presents a remarkable exploration into the interplay between magnetic order and optical properties in 2D materials, particularly focusing on FePS3/WSe2 heterostructures. The authors have successfully demonstrated how the magnetic ordering in FePS3 can induce a giant optical anisotropy in WSe2, marked by a significant linear polarization degree of 5.1 in exciton emission. This work stands out for its thorough analysis of low-temperature photoluminescence (PL) and Raman spectra, which provides compelling evidence of the impact of magnetic phase transitions on interlayer Coulomb interactions and, consequently, on the optical behavior of the heterostructures.

The study's findings are particularly important as they bridge the gap between the magnetic properties of 2D materials and their optical responses. The transition from paramagnetic to antiferromagnetic phases in FePS3, leading to a shift from non-polar to polar behavior, is a key highlight, demonstrating the potential for controlled manipulation of optical anisotropy through magnetic means. Furthermore, the investigation into valley-polarized PL spectra under varying magnetic fields offers valuable insights into the influence of FePS3 on valley polarization and Zeeman splitting in WSe2, adding a new dimension to our understanding of magneto-optical interactions in 2D systems.

This work not only advances our knowledge of 2D magnetic van der Waals heterostructures but also opens up new possibilities for the design and optimization of nanoscale optoelectronic devices. The ability to tune optoelectronic properties via magnetic order, as demonstrated in this study, could lead to significant breakthroughs in the fields of spintronics, magneto-optical storage, and quantum computing. Overall, this paper is a significant contribution to the field, and it will undoubtedly inspire further research into the complex interdependencies between magnetism and optics in 2D materials.